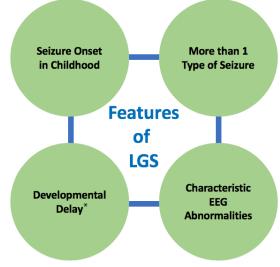
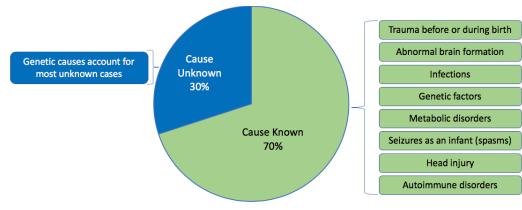
# LGS FOUNDATION LENNOX-GASTAUT SYNDROME


#### **CELEBRATING 10 YEARS**

A decade of service improving the lives of individuals affected by LGS through research, family support programs, and education.

#### What is LGS?


- Lennox-Gastaut Syndrome (LGS) is a rare epilepsy syndrome. It is one of the Developmental and Epileptic Encephalopathies (DEEs).
- Nobody is born with LGS. It may develop over time from childhood seizures that remain uncontrolled by treatments.
- Children and Adults with LGS share similar features:
  - Seizures that start in childhood
  - More than one seizure type
  - o Slow spike-and-wave on EEG
  - o Developmental delay/cognitive impairment (70% have this at diagnosis)
- Any seizure type can be seen in LGS. The most common seizure types are:

  - Atonic Drop Seizures
  - o Generalized Tonic-Clonic
  - o Atypical Absence
  - o Non-convulsive status epilepticus
  - o Myoclonic
- While developmental delay/cognitive impairment occurs in most with LGS, it is not always present at the start of LGS and is not required for the diagnosis to be made.



\*Developmental delay is not required to make the LGS diagnosis and 30% of kids are typically developing at diagnosis.

### What causes seizures in LGS?



Some genes and genomic regions associated with LGS:

| ALG13     | HNRNPU | SCN8A      |
|-----------|--------|------------|
| ARX       | KCNT1  | SETBP1     |
| CACNA2D2  | KCNQ2  | SIK1       |
| CLN1/2/5  | MAGI2  | SLC25A22   |
| CDKL5     | MEF2C  | SLC35A2    |
| DNM1      | NEDDL4 | SPTAN1     |
| DOCK7     | NDP    | ST3GAL3    |
| FLNA      | NRXN1  | STXBP1     |
| FOXG1 Dup | PCDH19 | TBD1D24    |
| GABRA1    | PIGA   | TCF4       |
| GABRB3    | PLCB1  | TSC1/2     |
| GLI3      | PPP3CA | WWOX       |
| GNAO1     | PTEN   | Dup 15q    |
| GRIN1     | SCA2   | 22q Del    |
| GRIN2A    | SCN1A  | Trisomy 21 |
| GRINBB    | SCN2A  |            |

- LGS occurs secondary to many different causes including injury, brain malformations, infections, and genetic factors.
- Most with LGS may have abnormal brain imaging, but some have normal brain imaging prior to developing LGS.
- LGS can also develop from other epilepsy syndromes such as West, Ohtahara, Hypothalamic Hamartoma, etc.
- Many genes are associated with LGS and each gene is a risk factor for developing LGS if seizures remain uncontrolled.
- Emerging evidence suggests that genetic factors account for most unknown causes of LGS.

## Who has LGS?

## How does LGS change over time?

- There is no cure for LGS. Seizures may go into remission, and may also recur.
- 30-50% of children with infantile spasms will develop LGS.
- 80-90% of children with LGS will continue to have seizures into adulthood.
- Up to 70% with LGS will no longer show slow spike-and-wave (<3Hz) on EEG in adulthood.
- Most with LGS show paroxysmal fast rhythms (10-20 Hz) on EEG, mainly during non-REM sleep, at some point in their life.
- 70% with LGS will show cognitive impairment at diagnosis and more than 50% suffer behavioral issues including hyperactivity, sleep disturbances, rage attacks, aggression, and autistic features.
- The mortality rate is 5%. Those with LGS are 24 times more likely to die prematurely.
- Premature death in LGS is often due to SUDEP\*, seizures, injury, or the underlying brain disorder.