C-21191: Deuterated Subtype-selective GABA(A) Modulator with Anticonvulsant Properties

Philip Graham, PhD, Lijun Wu PhD, Julie Fields Liu PhD, Vinita Uttamsingh PhD, Arturo J. Morales PhD, Changfu Cheng PhD, James Shipley MD, Scott Harbeson PhD
Creating Differentiated New Medicines with Deuterium

Deuterium-modification generally does not affect biochemical potency or selectivity.

Improve Drug Metabolism Profiles
- Reduce toxic metabolites
- Increase active metabolites
- Improve therapeutic window

Increase Half-life
- Improve efficacy
- Reduce drug dose
- Reduce side effects

Enhance Bioavailability and Exposure
- Reduce first-pass metabolism
- Improve GI tolerability
- Reduce drug dose
Benzodiazepines in Epilepsy

- Diazepam, lorazepam, clonazepam and midazolam, are often effective in controlling seizures, including status
- Unsuitable in many instances for long-term management due to sedative and cognition impairing effects as well as tolerance
- Traditional benzodiazepines act at the GABA\(_A\) receptor which has several subtypes
 - GABA is the primary inhibitory neurotransmitter in the CNS
 - Three subunits (\(\alpha,\beta,\gamma\)) make up the GABA\(_A\) receptor
 - Benzos act as full positive allosteric modulators (PAM) at the \(\alpha 1,2,3\) and 5 subtypes

The GABA\(_A\) Receptor
- Inhibits neuronal signaling

Positive Allosteric Modulator (PAM) binding site
Putative Role of GABA_A Subtypes

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Mediation of anti-convulsant effects</th>
<th>Other Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>Mixed evidence</td>
<td>Sedation</td>
</tr>
<tr>
<td>α2</td>
<td>Strong evidence for key role: KI mice, subtype-selective compounds</td>
<td>Anxiolysis, analgesia, cognition in schizophrenia</td>
</tr>
<tr>
<td>α3</td>
<td>Some evidence for role from subtype-selective compounds</td>
<td>Antipsychotic, analgesia</td>
</tr>
<tr>
<td>α5</td>
<td>No role: strong evidence from KI and KO mice</td>
<td>Amnesia, cognition</td>
</tr>
</tbody>
</table>

- Sub-type selective agents have been extensively studied preclinically including in seizure models
 - Potential for non-sedating, non-tolerance inducing drugs
- Suggeston of synergy in anticonvulsant effects between α2 and α1/α3

Fradley 2007, Collinson 2002; Crestani, 2000; Crestani, 2002; Dawson 2006; Low 2000
L-838417: Subtype-Selective GABA$_A$ Agonist Developed by Merck

- α_1 antagonist; α_2, α_3 and α_5 partial agonist - reduced sedation potential
- At <50% occupancy seizure activity in mice (PTZ and audiogenic models)1
- Effective in Bennett model of neuropathic/inflammatory pain with no evidence of tolerance after 10 days of dosing2
- Potential for reduced abuse/dependency liability of L-838417 observed in preclinical models vs. full agonists (triazolam)3
- Poor pharmacokinetic profile
- Not advanced into clinic

![Potentiation of GABA EC$_{20}$ current2](image)

1. Binding assay vs. [3H]flumazenil
2. Patch clamp assays in mouse cells with stably expressed receptors. Maximum efficacy with respect to full agonist chlordiazepoxide.

1 McKernan et al., Nat Neurosci, 3(6), 2000, 2 Knabl et al., Nature 451(17), 2008; 3 Rowlett PNAS January 18, 2005 vol. 102 no. 3
C-21191: Subtype-Selective GABA\(_A\) Modulator Stabilized With Deuterium. No Effect on Intrinsic Pharmacology

- \textit{in vitro} receptor binding profile is unchanged with deuterium modification
- Potential in pain and spasticity as well as epilepsy
Deuteration Significantly Enhances PO Pharmacokinetics in Rats and Dogs

Rat

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C-21191</th>
<th>L-838417</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{1/2}$ (hr)</td>
<td>1.76 ± 0.78</td>
<td>1.74 ± 0.21</td>
<td>--</td>
</tr>
<tr>
<td>C_{max} (ng/mL)</td>
<td>261 ± 34</td>
<td>55 ± 11</td>
<td>4.7X</td>
</tr>
<tr>
<td>AUC_{∞} (hr*ng/mL)</td>
<td>1007 ± 114</td>
<td>347 ± 86</td>
<td>2.9X</td>
</tr>
</tbody>
</table>

PO, discrete, 1 mg/kg, N=8 rats/cmpd, 0.5% methylcellulose

Dog

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C-21191</th>
<th>L-838417</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{1/2}$ (hr)</td>
<td>3.53 ± 2.54</td>
<td>2.74 ± 0.63</td>
<td>1.3X</td>
</tr>
<tr>
<td>C_{max} (ng/mL)</td>
<td>2587 ± 1004</td>
<td>492 ± 139</td>
<td>5.2X</td>
</tr>
<tr>
<td>AUC_{∞} (hr*ng/mL)</td>
<td>10882 ± 4741</td>
<td>2410 ± 932</td>
<td>4.5X</td>
</tr>
</tbody>
</table>

PO, discrete, 15 mg/kg, N=4 dogs/cmpd, 0.5% methylcellulose
Chung Neuropathic Pain Study: Improved PK/PD Demonstrated For C-21191 vs L-838417 In Rats

- Second study with PO doses from 1-100 mg/kg po
 - Dose-dependent increase in efficacy
 - Magnitude of effect similar to positive control (gabapentin 100 mg/kg po)
 - Duration of effect longer than gabapentin
C-21191 Displays Strong Efficacy and Wide Therapeutic Index in 6Hz (32 mA) Test in Mice at NINDS

- $\text{ED}_{50} = 1.24 \text{ mg/kg}$
- $\text{Rotarod}_{50} = 395 \text{ mg/kg}$

- n=8 per dose, drug dosed ip
- Peak effect: 0.25 to 0.5 hours
- No effect in MES screening study
- Limited effect in sc-metrazole screening study
C-21191: A Promising New Subtype-Selective GABAa Modulator for Epilepsy

- Deuterium modification enhances metabolic stability of C-21191 vs. L-838417
 - Increased oral exposure vs. L-838417 in rat (2.9X) and dog (4.5X)
 - \textit{In vitro} stabilization in human liver microsomes

- Greater duration of action in Chung pain model than gabapentin or L-838417

- Retains \textit{in vitro} pharmacology profile of L-838417

- Effective in 6Hz seizure model with large therapeutic index

- C-21191 may offer a new treatment option for epilepsy
 - Efficacy associated with benzodiazepines
 - Reduced sedation and tolerance liability

- Preclinical development activities are underway
Acknowledgments

- **NINDS – Anticonvulsant Screening Program**
 - James Stables Ph.D.
 - Tracey Chen Ph.D.
 - Jeff Jiang Ph.D.
 - H. Steve White Ph.D.

- **Chemistry**
 - Julie F. Liu, Ph. D.
 - Adesis, Inc.

- **Bioanalytical**
 - Changfu Cheng, Ph.D.
 - Gary Bridson

- **DMPK**
 - Vinita Uttamsingh, Ph.D.
 - Richard Gallegos
 - Sophia Nguyen
 - Medicilon

- **Pharmacology**
 - Lijun Wu, Ph.D.
 - PsychoGenics, Inc.

Philip Graham, Ph.D.
pgraham@concertpharma.com
Tel. 781-674-5246